DISPOSITIVO ELECTROLUMINISCENTE

Los experimentos llevados a cabo por el Consejo Superior de Investigaciones Científicas (CSIC) en la industria microelectrónica, han culminado con las siguiente invención:  Dispositivo electroluminiscente y procedimiento de fabricación del mismo.

La invención se refiere al campo de los dispositivos de emisión lumínica en campo lejano.  Actualmente, al contrario que con los métodos de fabricación utilizados en la industria microelectrónica, costosos en cuanto a precio y tiempo, la micro/nanoestructuración empleando litografía con partículas coloidales se ha convertido en un método generalizado para producir estructuras periódicas bidimensionales (2D) con una gran variedad de topologías que podrían encontrar aplicación en muchos campos diferentes tales como biosensores o la microelectrónica.

Por lo que respecta al campo de la fotónica, donde el objetivo es controlar la propagación y emisión de la luz, los sistemas periódicos 2D fabricados a partir de monocapas (MC) de esferas dieléctricas han sido investigadas a fondo en los últimos años. Su uso en forma de cristales fotónicos se ha explorado tanto teórica como experimentalmente, así como su uso potencial tanto como dispositivos para modificar la emisión de películas de nanocristales de semiconductor, asimismo su uso a modo de matrices de microlentes para mejorar la extracción de luz de diodos emisores de luz (LED), ha sido demostrada recientemente.

EXPRIMENTOS - electroluminiscente

Recientemente, la combinación de sistemas fotónicos y plasmónicos se ha demostrado como un medio para obtener altas intensidades de campo electromagnético en regiones espaciales con dimensiones inferiores a la longitud de onda. En estos sistemas las pérdidas asociadas con los plasmones se evitan y las aplicaciones como guías de onda han sido presentadas.

Descripción de la invención

El dispositivo objeto de la invención es un dispositivo electroluminiscente sintonizable mediante estímulos externos, dicho dispositivo comprende una serie de emisores de luz embebidos en unas esferas que conforman una monocapa que recubre un substrato para dar forma al dispositivo objeto de la invención. Dichos emisores pueden ser colorantes orgánicos distribuidos como emisores de luz u otros emisores de luz tales como puntos cuánticos (QDs) o vacantes de N en diamante dispuestos en el volumen de las esferas de polímero que se encuentran ordenadas periódicamente sobre una lámina de oro depositada sobre una oblea, donde estas últimas definen en el sustrato.

Dichas esferas contienen los emisores de luz en su interior y se pueden obtener mediante técnicas de polimerización en emulsión, donde el líquido desde el que se conforma la esfera (de unos 500 nm de diámetro) comprende la solución con el monómero y el emisor de luz en particular, ya sea éste un colorante orgánico, un punto cuántico o centros N-V (vacante de nitrógeno) en diamante.

Haciendo uso de la concentración de campo eléctrico en el núcleo de las esferas, como consecuencia de la presencia del sustrato compuesto por una oblea, que puede ser de vidrio o de silicio o cualquier otro material con una rugosidad inferior a 5 nm, y la película de oro, se puede:

- Aumentar la eficiencia de extracción de la emisión del colorante orgánico (comparado con sistemas similares crecidos sobre sustratos dieléctricos) lo que supone un aumento en la eficiencia del dispositivo final.

- Aumentar la direccionalidad de la emisión con respecto a un dispositivo que no presente la periodicidad en la
lámina dieléctrica.

- Obtener una emisión altamente polarizada.

El dispositivo de la invención puede trabajar con el campo eléctrico concentrado principalmente en el centro de las esferas, es decir puede trabajar en el denominado modo fotónico, o también puede hacer uso de los modos con el campo eléctrico concentrado en la superficie de oro, es decir trabajar en modos plasmónicos, o trabajar en modos híbridos. Estos modos, aunque presentan el problema de la absorción debido a la cercanía del metal, ofrecen
la posibilidad de depositar distintos tipos de emisor una vez fabricado el dispositivo, a diferencia de una configuración inicial del dispositivo anteriormente descrita en la que el material emisor está fijado en el proceso de fabricación.

Debido a la naturaleza de los materiales empleados en su fabricación, el dispositivo ofrece la posibilidad de realizar una sintonización fina de sus propiedades ópticas (y por tanto de su emisión) mediante un post-proceso de ataque con plasma de oxígeno (plasma etching).

En dicho proceso, las esferas que forman el cristal pueden ser reducidas homogéneamente en diámetro de tal forma que el parámetro de red se mantiene constante al mismo tiempo que se varía el porcentaje de llenado de la estructura. La reducción del porcentaje de llenado requerido del material orgánico es altamente controlable con esta tecnología lo que le confiere a esta técnica control nanométrico sobre el diámetro de las esferas. Esto permite una variación muy controlada de la posición espectral de los modos del sistema y por lo tanto de sus características de emisión, además de la sintonización, este tipo de ajuste permite el control de la distribución angular de la emisión característico del sistema.

FUENTE | OEPM

Los comentarios están cerrados.

Busca en Experimentos
Síguenos en twitter Síguenos en facebook Suscríbete al RSS de experimentos
Más experimentos